Q to I ‘ Sachin Patil* and Srikant Patnaik**
r I C e ‘ *Linux System Administrator in Indian Institute of Technology, Bombay

**Research Assistant, FOSSEE, IIT Bombay

GNU/Linux on Aakash

Introduction

In the January 2013 issue of
Communications of CSI, the article
"Genesis of Aakash" had explained the
events leading to the creation of Aakash
this has been explained by Moudgalya,
Phatak, Sinha, and Varma. In this
article, we will explain the work that we
undertook to port GNU/Linux in native
mode on Aakash.

Android is a great platform, it's
free, and easy to learn. Most of us will
acknowledge the use of Google's Android
on Aakash. The reason is that Android is
not designed to run GNU apps, although
it is based on Linux Kernel. This means
that one has to rewrite all useful apps
on a new platform, using only Java
programming language. Beside these
restrictions, Android also tracks user
activity, and apps may contain ads which
are difficult to manage.

The first version of Aakash that we
worked on came with the Android Ice-
cream sandwich version. It looked nice
with a visually pleasing user interface. It
had multiple desktop support, efficient
menu applications, perfectly suited for any
touch based device. On scanning through,
we came across the picture gallery,
calendar, messaging, contacts, clock, etc.
These applications come by default with
any Android device. The first question
that came to our mind was, 'Is this what
will go to our students? What will they do
with it?" Most school going children would
be unaware of how to use these apps, and
instead would play around with drawing
tools, games, and other items, which they
are familiar with. Sadly no Android device
comes with preinstalled educational
applications by default.

Furthermore, Android was not
intended to serve educational purposes.
It was created to serve as a mobile
operating system. An operating system
with GUI specially designed for calling
and messaging, which improved as it
evolved. Several applications in android
were written by developers across the
world. With time, its user interface was
optimized, making it easier to use. Until
now, Android was largely used as an
entertainment operating system. It is well

CSI Communications | June 2013 | 30

suited for those who just want their work
to be done without knowing what goes
within. In contrast, Aakash is specially
meant for education: we don't want our
student to stop with playing games;
nor do we want to restrict them to the
development of another “Angry Birds'
kind of game. We want them to learn,
read, write, and carry experiments on their
device. This device should be considered
equivalent to any desktop we use today.
We aimed to give them a full fledged
device to help, play, and experiment
without any limitations.

Why GNU/Linux (where

Android lags)

Android uses the same Linux kernel
optimized for embedded devices and
excellent memory management. Though
it has an easy to use GUI, it is generally
not suited for everyone, especially
students, as explained above. This serves
strong motive to port GNU/Linux on
Aakash. Although GNU/Linux uses the
same Linux kernel, its file system differs
completely. It gives us complete freedom
to explore every part of software as well
as hardware. The best part is, the GNU
applications allow the curious learner to
read the code and find out the way the
applications work. If one is dissatisfied
with the application, one is free to
download the source code and modify
it accordingly. He or she can even go on
and share their modified code with the

community, provided they acknowledge
the original authors and attach the same
GNU license with the code. This is where
Android lags behind Aakash: most of
the popular free apps are closed source
in nature.

Moreover, because of the licensing
restrictions, it is not possible for us to
distribute useful Android Apps with
Aakash, since we have to get permission
from the creator of each App individually.
Each one may want different agreement
forms to be signed. A bigger problem is
that most creators of popular Apps are
difficult to locate and hence, the mails to
them will go unanswered. GNU/Linux, on
the other hand, is especially designed for
such campaigns.

Porting

On exploring the hardware of Aakash
tablets: we realized that this relatively
new SoC from All-winner has support
for GNU/Linux, which although limited,
was sufficient enough to start our work.
In pursuit of a development board needed
to start our work, we looked around and
finally decided to open the device itself.
We asked the vendor for pin numbers
that were needed to obtain the transmit
data(Tx) and receive data(Rx) pins out
from CPU. This information is required
for debugging. With the help of a USB to
serial converter, we connected the pins
to a computer using an USB port. Our
hardware team managed to get those

www.csi-india.org

* Universal Access

@ Proferences

pins out, after which and our development
device was ready. Without the serial out,
it is difficult to track the booting process.

We had two choices, either to let
the GNU/Linux boot from its internal
memory(NAND flash) itself or to let the
complete OS boot from an external SD-
card. Fortunately the All-winner chip has
a facility to boot the OS from the SD-card.
Interested learners can boot GNU/Linux
from SD-card without touching any part
of Android.

We started compiling the boot loader.
The boot-loaders on embedded system
are different, and in Aakash the complete
OS has to boot from the SD-card. Then
we went on to compile U-boot. It is the
uboot binary file on SD-card, which makes
the SD-card bootable. After successfully
loading, the uboot finally calls on the kernel
to initialize hardware. We used minicom to
view all booting processes. The next major
challenge was the Linux kernel. It is the
most important part, as all the hardware
and applications ultimately depend on it.
If the kernel successfully detects all the
hardware, then we can proceed further to
test the file system. If not, we need to fix it
by analyzing Android kernel logs, keeping
in mind all the hardware and configuring
the same in our present kernel. Thanks
to the open source community, we found
forked versions of original Linux kernel
maintained by All-winner team.

We used the default cross-compiler
as suggested online. It gave compilation
errors and the compilation process
failed frequently. This is the same cross-

compiler that is readily available in
Ubuntu's repository. After many trial
we decided to use the Codesourcery's
cross-compiler tool-chain. We have used
these tool-chains in the past. To set up
Codesourcery's tool-chain, one has to
register before downloading its binary.
After downloading, it has to be installed
and a custom path to the tool chain has
to be set in order to compile the kernel.
We first used the Debian root file-system,
which we got online. The script.bin file was
not fully compatible with Aakash. It took
us some time to extract Aakash's own
script.bin file and to change its default
parameters to make a running kernel and
root file-system. Merely modifying script.
bin file was not enough, some kernel
modules like WiFi and touch have to be
auto-loaded while booting. These changes
have to be made in the file-system path /
etc/modules to make them work. With
all those changes, we had basic version
running in a week.

On Aakash, GNU/Linux boots
from micro SD-card and the file-system
reside within the SD-card. Both Android
and GNU/Linux operating systems are
completely isolated from other. The good
part is that we can access all the Android's
content from GNU/Linux.

Enabling touch was a major
challenge, as we have never worked
on touch before. Initially when tried to
interact with the tablet using touch on
Debian, it didn't respond. We had to go
through Android's log-cat and dmesg to
identify the touch screen driver, which we

found out was focal-touch(ft5x_ts). When
it was enabled as a module, it worked but
we had to disable the multi-touch feature
in the file. Currently Aakash has three
touch screen drivers, of which two work.

For an application like ExpEYES
(explained below) and Arduino, which
uses an USB-to-serial interface for
interacting with the hardware, we had to
enable kernel support for Communication
Device Class(CDC) ExpEYES as ACM
device. On the device level, it is detected
as Abstract Control Model(ACM) drivers.
The Linux kernel detects /dev/ttyACMO.
Also for ACM to work, generic USB
support should be enabled in the kernel.

On the desktop, we can pass
arguments to the kernel, ask kernel to
load some modules, disable misbehaving
modules and so on. Similarly we can pass
arguments to kernel on an embedded
device using script.bin file. On Aakash,
pre-customization, module loading
for wireless networks, setting display
resolution, loading touch drivers, etc., can
be done using script.bin. Although Script.
bin is a binary file, actual editing can be
done by converting it to fex format.

Ubuntu as GNU/Linux Distribution
With the Linux kernel in place, now was the
right time to decide upon file system . We
tried Debian first, but due to lack of hard-
float support in Debian Squeeze release,
we dropped it. We also tried Debian
Wheezy but we were uncertain about of
pre-release versions. The best choice left
to us was Ubuntu, which is known for
being easy to use amongst newcomers
and advanced developers alike. It has
a great package-manager, using which
one can install required packages both
from command line and using graphical
interface. Hence we agreed to use Ubuntu.
We started with Ubuntu-12.10
core arm hard-float distribution. When
uncompressed, it consumes around
100MB only. We wused the ch-root
environment to configure package-

-

2] DLIbreOﬂ’ice

g 1

“

= |

CSI Communications | June 2013 | 31

Ihome/aakashOs CADUERamplésmridgeRectifian]

manager, basic network tools, user
applications and a desktop environment.

Before putting the file-system to
actual use, the compiled kernel and its
modules were placed in /lib/modules
directory of the file-system, where all
kernel modules reside.

The next challenge was the Desktop
environment. We tried Unity, KDE
Plasma, XFCE, MATE, enlightenment
(e17), and Gnome-3, all of which need
around 120 MB RAM with some hardware
acceleration, except e17. After considering
the options we finally decided to go with
LXDE(not Lubuntu).

The Ubuntu-core file-system includes
only basic utilities and a package-manager
(apt-get). Comparing with a Desktop
version, it does not even have a basic
networking tools like ping or root user
utilities, such as sudo. Ubuntu Boot-splash
screen, Desktop-Environment, screen
savers, UbuntuOne sync, daemons, etc.,
consume a lot of memory. We compared
memory consumption of each process
before installing one in core file-system.
For example, Ubuntu's default Desktop-
Environment(Unity) consumed much
more memory than LXDE. By discarding
these overheads, we finally managed to
boot Ubuntu in less than 50MB RAM. We
also made a few customizations on open-
box and gtk2.0 to make it touch friendly.

Applications

We focused largely on educational
applications. With repositories in the
path, one can easily install any application
of one's choice. We pre-installed some

CSI Communications | June 2013 | 32

ey

popular and useful applications. The first
application we installed was Onboard,
to serve as the virtual keyboard. Next
we installed the LibreOffice pack.
Although it's a bit heavier than AbiWord,
its features make it worth installing.
Scilab-5.3.3 was also installed and tested.
Both numerical and graphical calculations
are executed much faster than on
Android(https://github.com/androportal/
APL-apk). More than 150 Scilab textbook
companions (http://scilab.in) are now
available in our latest builds. A Scilab
textbook companion is a listing of code
that implements worked out examples
in standard textbooks. Arduino, an open
source hardware with Gnoduino IDE, has
also been tested and included.

ExpEYES is a hardware and software
tool for learning and exploring science
experiments. It supports 50 experiments
for high-school and above. For interacting
with the hardware, we have a Debian
package called ExpEYES Junior. This is
a tablet version alternative for ExpEYES
in desktop.

OSCAD is another open source EDA
tool, acronym as Open Source Computer
Aided Design. It has been developed
using several open source tools like KiCad,
Ngspice, and Scilab at IIT Bombay. Python-
TKinter is used to program its front-end.
Since tools such as KiCad, Ngspice, and
Scilab already run on Aakash, OSCAD's
installation procedure was similar to
any other desktop running GNU/linux.
Aakash's capability to run Electronic
design tools is demonstrated by the fact
that OSCAD runs on it.

We also installed iPython-notebook
for scientific computing, and Mayavi2 for
3D visualization of data.

Conclusion

After these customization process,
we now have Ubuntu 1210 with Linux
kernel version 3.0.57 working on
Aakash. It is suitable for educational
as well as entertainment purposes.
For programming and development

one can attach an external keyboard
and mouse, if one is not comfortable
with virtual keyboard. One can see
all the features and application of a
typical desktop computer on Aakash.
With ExpEYES and Arduino working,
one can perform hardware interfacing

#F B A
Solab Console

sc1lab-5.3.2

Camgartivm Seilab [DIGIT
Copyright (¢} 18882011 (I
Copyright (¢} 1929.2007 (B

[Btartup execution:
Lloading rnaitial environment

--splatad()
WARNIMG = The size of the figure may not

WAPNING: Due to your configuration Limd
rals and graphics is not available

www.csi-india.org

with any other hardware. GNU/Linux
on Aakash provides opportunities to
experiment on a portable device. With
1 GHz processor and 512MB memory, it
has the potential to run any other GNU
applications. Currently we have image
targeted for 8GB SD-card of which
first 16M FAT partition is dedicated to
bootloader(uboot.bin) and script.bin
file. 1GB is used as swap file-system in
case if the actual RAM gets used up.
The entire file-system along with install
applications and other utilities consumes
around 3GB space. Approximately 3.5
GB is left free for storage and other
installation to user. The capacity of the
SD-card can be expanded up to 32GB.

Contributing to Project

We look forward to seeing GNU/Linux
enthusiasts contribute to this project.
Please visit our github page for detailed
documentation on porting of Aakash.
There are many open issues, such as,
brightness control, sleep mode, touch
drivers, etc. We have documented our
work at http://androportal.github.com/
linux-on-aakash/.

Aakash Application Development
Competition

In January 2013 issue of Communications
of CSI, we had announced a competition
based on Aakash, for both Android and
GNU/Linux operating systems.

This competition aimed to encourage
students and individuals across the country
to come up with innovative applications
that could be used on Aakash. The source
code of each application will be released as
free and open source. The Application can
be Android or GNU/linux based.

More that 1600 participants
registered for the Aakash application
development competition. These
participants are from various engineering
colleges and universities across India. We
asked those participants to re-group in
teams consisting of maximum 5 people,
and re-submit their project proposal. On
the basis of project description, we have
shortlisted 140 teams, whose work will be
developed further. Any updates related
to competition will be posted on http:/
aakashlabs.org/compete.

Traditionally all applications running

on GNU/linux desktop should also run
on GNU/linux on Aakash. But one must
ensure that the application is touch
friendly and consumes minimum RAM.
The Aakash team at IIT Bombay is willing
to help the participants: for example,
the participants: for example, the
participants can send their application to
us for testing.

We still have many open issues on
GNU/linux port. Before contributing, we
expect the participants of the competition
to go through our GNU/linux porting
documentation on github page http:/
androportal.github.io/linux-on-aakash/.

We are in need of developers who
are interested in GNU/Linux system. They
must have sound knowledge of Linux
kernel and working of various GNU/linux
distributions.

LocalWords: bootable uboot
minicom online Codesourcery's Aakash
LocalWords: Aakash's WiFi NAND
Bootloader dmesg multi ExpEYES USB #
LocalWords: Arduino ACM linux github
pre onboard LibreOffice # LocalWords:
AbiWord Scilab |

'd
£
o
<
=
=
<
[}
4=
=
-
3
°
E]
<

Srikant Patnaik He is a developer, teacher and motivator. His first contribution to FOSS came as a simple 8051
Programmer for Linux, available at sourceforge. He served as a Lecturer at Loyola academy, Hyderabad. Later
joined IIT Bombay as a Research Assistant in FOSSEE project. He contributed in Porting of GNU/Linux on Aakash
and also associated with Android app to run Scilab and other programming languages. His interests include
blogging, designing circuits, bridging software and hardware.

Sachin Patil is currently working as a Linux System Administrator in Indian Institute of Technology, Bombay. Apart
from System Administration, he has also gained some experience in Android and embedded systems. He, along
with Srikant Patnaik, has ported Scilab — a software for Numerical Computation on ‘Aakash’, a low cost access
device project funded by NMEICT, Govt. of India. He is also interested in customising GNU/linux distributions.
Beside Ubuntu, his other favourite GNU/linux distro is Slackware, which he likes to work on because of its
simplicity and robustness.

CSI Communications | June 2013 | 33

