
CSI Communications | June 2013 | 30 www.csi-india.org

Introduction
In the January 2013 issue of

Communications of CSI, the article

"Genesis of Aakash" had explained the

events leading to the creation of Aakash

this has been explained by Moudgalya,

Phatak, Sinha, and Varma. In this

article, we will explain the work that we

undertook to port GNU/Linux in native

mode on Aakash.

Android is a great platform, it’s

free, and easy to learn. Most of us will

acknowledge the use of Google’s Android

on Aakash. The reason is that Android is

not designed to run GNU apps, although

it is based on Linux Kernel. This means

that one has to rewrite all useful apps

on a new platform, using only Java

programming language. Beside these

restrictions, Android also tracks user

activity, and apps may contain ads which

are diffi cult to manage.

The fi rst version of Aakash that we

worked on came with the Android Ice-

cream sandwich version. It looked nice

with a visually pleasing user interface. It

had multiple desktop support, effi cient

menu applications, perfectly suited for any

touch based device. On scanning through,

we came across the picture gallery,

calendar, messaging, contacts, clock, etc.

These applications come by default with

any Android device. The fi rst question

that came to our mind was, 'Is this what

will go to our students? What will they do

with it?’ Most school going children would

be unaware of how to use these apps, and

instead would play around with drawing

tools, games, and other items, which they

are familiar with. Sadly no Android device

comes with preinstalled educational

applications by default.

Furthermore, Android was not

intended to serve educational purposes.

It was created to serve as a mobile

operating system. An operating system

with GUI specially designed for calling

and messaging, which improved as it

evolved. Several applications in android

were written by developers across the

world. With time, its user interface was

optimized, making it easier to use. Until

now, Android was largely used as an

entertainment operating system. It is well

suited for those who just want their work

to be done without knowing what goes

within. In contrast, Aakash is specially

meant for education: we don't want our

student to stop with playing games;

nor do we want to restrict them to the

development of another `Angry Birds'

kind of game. We want them to learn,

read, write, and carry experiments on their

device. This device should be considered

equivalent to any desktop we use today.

We aimed to give them a full fl edged

device to help, play, and experiment

without any limitations.

Why GNU/Linux (where
Android lags)
Android uses the same Linux kernel

optimized for embedded devices and

excellent memory management. Though

it has an easy to use GUI, it is generally

not suited for everyone, especially

students, as explained above. This serves

strong motive to port GNU/Linux on

Aakash. Although GNU/Linux uses the

same Linux kernel, its fi le system diff ers

completely. It gives us complete freedom

to explore every part of software as well

as hardware. The best part is, the GNU

applications allow the curious learner to

read the code and fi nd out the way the

applications work. If one is dissatisfi ed

with the application, one is free to

download the source code and modify

it accordingly. He or she can even go on

and share their modifi ed code with the

community, provided they acknowledge

the original authors and attach the same

GNU license with the code. This is where

Android lags behind Aakash: most of

the popular free apps are closed source

in nature.

Moreover, because of the licensing

restrictions, it is not possible for us to

distribute useful Android Apps with

Aakash, since we have to get permission

from the creator of each App individually.

Each one may want diff erent agreement

forms to be signed. A bigger problem is

that most creators of popular Apps are

diffi cult to locate and hence, the mails to

them will go unanswered. GNU/Linux, on

the other hand, is especially designed for

such campaigns.

Porting
On exploring the hardware of Aakash

tablets: we realized that this relatively

new SoC from All-winner has support

for GNU/Linux, which although limited,

was suffi cient enough to start our work.

In pursuit of a development board needed

to start our work, we looked around and

fi nally decided to open the device itself.

We asked the vendor for pin numbers

that were needed to obtain the transmit

data(Tx) and receive data(Rx) pins out

from CPU. This information is required

for debugging. With the help of a USB to

serial converter, we connected the pins

to a computer using an USB port. Our

hardware team managed to get those

GNU/Linux on Aakash

Article
Sachin Patil* and Srikant Patnaik**
*Linux System Administrator in Indian Institute of Technology, Bombay
**Research Assistant, FOSSEE, IIT Bombay

CSI Communications | June 2013 | 31

pins out, after which and our development

device was ready. Without the serial out,

it is diffi cult to track the booting process.

We had two choices, either to let

the GNU/Linux boot from its internal

memory(NAND fl ash) itself or to let the

complete OS boot from an external SD-

card. Fortunately the All-winner chip has

a facility to boot the OS from the SD-card.

Interested learners can boot GNU/Linux

from SD-card without touching any part

of Android.

We started compiling the boot loader.

The boot-loaders on embedded system

are diff erent, and in Aakash the complete

OS has to boot from the SD-card. Then

we went on to compile U-boot. It is the

uboot binary fi le on SD-card, which makes

the SD-card bootable. After successfully

loading, the uboot fi nally calls on the kernel

to initialize hardware. We used minicom to

view all booting processes. The next major

challenge was the Linux kernel. It is the

most important part, as all the hardware

and applications ultimately depend on it.

If the kernel successfully detects all the

hardware, then we can proceed further to

test the fi le system. If not, we need to fi x it

by analyzing Android kernel logs, keeping

in mind all the hardware and confi guring

the same in our present kernel. Thanks

to the open source community, we found

forked versions of original Linux kernel

maintained by All-winner team.

We used the default cross-compiler

as suggested online. It gave compilation

errors and the compilation process

failed frequently. This is the same cross-

compiler that is readily available in

Ubuntu's repository. After many trial

we decided to use the Codesourcery's

cross-compiler tool-chain. We have used

these tool-chains in the past. To set up

Codesourcery's tool-chain, one has to

register before downloading its binary.

After downloading, it has to be installed

and a custom path to the tool chain has

to be set in order to compile the kernel.

We fi rst used the Debian root fi le-system,

which we got online. The script.bin fi le was

not fully compatible with Aakash. It took

us some time to extract Aakash's own

script.bin fi le and to change its default

parameters to make a running kernel and

root fi le-system. Merely modifying script.

bin fi le was not enough, some kernel

modules like WiFi and touch have to be

auto-loaded while booting. These changes

have to be made in the fi le-system path /

etc/modules to make them work. With

all those changes, we had basic version

running in a week.

On Aakash, GNU/Linux boots

from micro SD-card and the fi le-system

reside within the SD-card. Both Android

and GNU/Linux operating systems are

completely isolated from other. The good

part is that we can access all the Android's

content from GNU/Linux.

Enabling touch was a major

challenge, as we have never worked

on touch before. Initially when tried to

interact with the tablet using touch on

Debian, it didn't respond. We had to go

through Android's log-cat and dmesg to

identify the touch screen driver, which we

found out was focal-touch(ft5x_ts). When

it was enabled as a module, it worked but

we had to disable the multi-touch feature

in the fi le. Currently Aakash has three

touch screen drivers, of which two work.

For an application like ExpEYES

(explained below) and Arduino, which

uses an USB-to-serial interface for

interacting with the hardware, we had to

enable kernel support for Communication

Device Class(CDC) ExpEYES as ACM

device. On the device level, it is detected

as Abstract Control Model(ACM) drivers.

The Linux kernel detects /dev/ttyACM0.

Also for ACM to work, generic USB

support should be enabled in the kernel.

On the desktop, we can pass

arguments to the kernel, ask kernel to

load some modules, disable misbehaving

modules and so on. Similarly we can pass

arguments to kernel on an embedded

device using script.bin fi le. On Aakash,

pre-customization, module loading

for wireless networks, setting display

resolution, loading touch drivers, etc., can

be done using script.bin. Although Script.

bin is a binary fi le, actual editing can be

done by converting it to fex format.

Ubuntu as GNU/Linux Distribution
With the Linux kernel in place, now was the

right time to decide upon fi le system . We

tried Debian fi rst, but due to lack of hard-

fl oat support in Debian Squeeze release,

we dropped it. We also tried Debian

Wheezy but we were uncertain about of

pre-release versions. The best choice left

to us was Ubuntu, which is known for

being easy to use amongst newcomers

and advanced developers alike. It has

a great package-manager, using which

one can install required packages both

from command line and using graphical

interface. Hence we agreed to use Ubuntu.

We started with Ubuntu-12.10

core arm hard-fl oat distribution. When

uncompressed, it consumes around

100MB only. We used the ch-root

environment to confi gure package-

CSI Communications | June 2013 | 32 www.csi-india.org

manager, basic network tools, user

applications and a desktop environment.

Before putting the fi le-system to

actual use, the compiled kernel and its

modules were placed in /lib/modules

directory of the fi le-system, where all

kernel modules reside.

The next challenge was the Desktop

environment. We tried Unity, KDE

Plasma, XFCE, MATE, enlightenment

(e17), and Gnome-3, all of which need

around 120 MB RAM with some hardware

acceleration, except e17. After considering

the options we fi nally decided to go with

LXDE(not Lubuntu).

The Ubuntu-core fi le-system includes

only basic utilities and a package-manager

(apt-get). Comparing with a Desktop

version, it does not even have a basic

networking tools like ping or root user

utilities, such as sudo. Ubuntu Boot-splash

screen, Desktop-Environment, screen

savers, UbuntuOne sync, daemons, etc.,

consume a lot of memory. We compared

memory consumption of each process

before installing one in core fi le-system.

For example, Ubuntu's default Desktop-

Environment(Unity) consumed much

more memory than LXDE. By discarding

these overheads, we fi nally managed to

boot Ubuntu in less than 50MB RAM. We

also made a few customizations on open-

box and gtk2.0 to make it touch friendly.

Applications
We focused largely on educational

applications. With repositories in the

path, one can easily install any application

of one's choice. We pre-installed some

popular and useful applications. The fi rst

application we installed was Onboard,

to serve as the virtual keyboard. Next

we installed the LibreOffi ce pack.

Although it’s a bit heavier than AbiWord,

its features make it worth installing.

Scilab-5.3.3 was also installed and tested.

Both numerical and graphical calculations

are executed much faster than on

Android(https://github.com/androportal/

APL-apk). More than 150 Scilab textbook

companions (http://scilab.in) are now

available in our latest builds. A Scilab

textbook companion is a listing of code

that implements worked out examples

in standard textbooks. Arduino, an open

source hardware with Gnoduino IDE, has

also been tested and included.

ExpEYES is a hardware and software

tool for learning and exploring science

experiments. It supports 50 experiments

for high-school and above. For interacting

with the hardware, we have a Debian

package called ExpEYES Junior. This is

a tablet version alternative for ExpEYES

in desktop.

OSCAD is another open source EDA

tool, acronym as Open Source Computer

Aided Design. It has been developed

using several open source tools like KiCad,

Ngspice, and Scilab at IIT Bombay. Python-

TKinter is used to program its front-end.

Since tools such as KiCad, Ngspice, and

Scilab already run on Aakash, OSCAD's

installation procedure was similar to

any other desktop running GNU/linux.

Aakash's capability to run Electronic

design tools is demonstrated by the fact

that OSCAD runs on it.

We also installed iPython-notebook

for scientifi c computing, and Mayavi2 for

3D visualization of data.

Conclusion
After these customization process,

we now have Ubuntu 12.10 with Linux

kernel version 3.0.57 working on

Aakash. It is suitable for educational

as well as entertainment purposes.

For programming and development

one can attach an external keyboard

and mouse, if one is not comfortable

with virtual keyboard. One can see

all the features and application of a

typical desktop computer on Aakash.

With ExpEYES and Arduino working,

one can perform hardware interfacing

CSI Communications | June 2013 | 33

A
bo

ut
 th

e
A

ut
ho

rs

Srikant Patnaik He is a developer, teacher and motivator. His fi rst contribution to FOSS came as a simple 8051

Programmer for Linux, available at sourceforge. He served as a Lecturer at Loyola academy, Hyderabad. Later

joined IIT Bombay as a Research Assistant in FOSSEE project. He contributed in Porting of GNU/Linux on Aakash

and also associated with Android app to run Scilab and other programming languages. His interests include

blogging, designing circuits, bridging software and hardware.

Sachin Patil is currently working as a Linux System Administrator in Indian Institute of Technology, Bombay. Apart

from System Administration, he has also gained some experience in Android and embedded systems. He, along

with Srikant Patnaik, has ported Scilab — a software for Numerical Computation on ‘Aakash’, a low cost access

device project funded by NMEICT, Govt. of India. He is also interested in customising GNU/linux distributions.

Beside Ubuntu, his other favourite GNU/linux distro is Slackware, which he likes to work on because of its

simplicity and robustness.

with any other hardware. GNU/Linux

on Aakash provides opportunities to

experiment on a portable device. With

1 GHz processor and 512MB memory, it

has the potential to run any other GNU

applications. Currently we have image

targeted for 8GB SD-card of which

first 16M FAT partition is dedicated to

bootloader(uboot.bin) and script.bin

file. 1GB is used as swap file-system in

case if the actual RAM gets used up.

The entire file-system along with install

applications and other utilities consumes

around 3GB space. Approximately 3.5

GB is left free for storage and other

installation to user. The capacity of the

SD-card can be expanded up to 32GB.

Contributing to Project
We look forward to seeing GNU/Linux

enthusiasts contribute to this project.

Please visit our github page for detailed

documentation on porting of Aakash.

There are many open issues, such as,

brightness control, sleep mode, touch

drivers, etc. We have documented our

work at http://androportal.github.com/

linux-on-aakash/.

Aakash Application Development
Competition
In January 2013 issue of Communications

of CSI, we had announced a competition

based on Aakash, for both Android and

GNU/Linux operating systems.

This competition aimed to encourage

students and individuals across the country

to come up with innovative applications

that could be used on Aakash. The source

code of each application will be released as

free and open source. The Application can

be Android or GNU/linux based.

More that 1600 participants

registered for the Aakash application

development competition. These

participants are from various engineering

colleges and universities across India. We

asked those participants to re-group in

teams consisting of maximum 5 people,

and re-submit their project proposal. On

the basis of project description, we have

shortlisted 140 teams, whose work will be

developed further. Any updates related

to competition will be posted on http://

aakashlabs.org/compete.

Traditionally all applications running

on GNU/linux desktop should also run

on GNU/linux on Aakash. But one must

ensure that the application is touch

friendly and consumes minimum RAM.

The Aakash team at IIT Bombay is willing

to help the participants: for example,

the participants: for example, the

participants can send their application to

us for testing.

We still have many open issues on

GNU/linux port. Before contributing, we

expect the participants of the competition

to go through our GNU/linux porting

documentation on github page http://

androportal.github.io/linux-on-aakash/.

We are in need of developers who

are interested in GNU/Linux system. They

must have sound knowledge of Linux

kernel and working of various GNU/linux

distributions.

LocalWords: bootable uboot

minicom online Codesourcery's Aakash

LocalWords: Aakash's WiFi NAND

Bootloader dmesg multi ExpEYES USB #

LocalWords: Arduino ACM linux github

pre onboard LibreOffi ce # LocalWords:

AbiWord Scilab n

